Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action
نویسندگان
چکیده
Functional data analysis is concerned with inherently infinite-dimensional data objects and therefore can be viewed as part of the methodology for Big Data. The size of functional data may vary from terabytes as encountered in fMRI (functional magnetic resonance imaging ) and other applications in brain imaging to just a few kilobytes in longitudinal data with small or modest sample sizes. In this contribution, we highlight some applications of functional data analysis methodology through various data illustrations. We briefly review some basic computational tools that can be used to accelerate implementations of functional data analysis methodology. The analyses presented in this paper illustrate the PACE (principal analysis by conditional expectation) package for functional data analysis, where our applications include both relatively simple and more complex functional data from the biomedical sciences. The data we discuss range from functional data that result from daily movement profile tracking and that are modeled as repeatedly observed functions per subject, to medfly longitudinal behavior profiles, where the goal is to predict remaining lifetime of individual flies. We also discuss the quantification of connectivity of fMRI signals that is of interest in brain imaging and the prediction of continuous traits from high-dimensional SNPs in genomics. The methods of functional data analysis that we demonstrate for these analyses include functional principal component analysis, functional regression and correlation, the modeling of dependent functional data and the stringing of high-dimensional data into functional data and can be implemented with the PACE package.
منابع مشابه
Persian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملGeneralization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems
In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...
متن کاملFunctional Principal Component Analysis of Aircraft Trajectories
In Functional Data Analysis (FDA), the underlying structure of a raw observation is functional and data are assumed to be sample paths from a single stochastic process. Functional Principal Component Analysis (FPCA) generalizes the standard multivariate Principal Component Analysis (PCA) to the infinite-dimensional case by analyzing the covariance structure of functional data. By approximating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015